Package com.oracle.bmc.ailanguage.model
Class NamedEntityRecognitionModelMetrics.Builder
- java.lang.Object
-
- com.oracle.bmc.ailanguage.model.NamedEntityRecognitionModelMetrics.Builder
-
- Enclosing class:
- NamedEntityRecognitionModelMetrics
public static class NamedEntityRecognitionModelMetrics.Builder extends Object
-
-
Constructor Summary
Constructors Constructor Description Builder()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description NamedEntityRecognitionModelMetricsbuild()NamedEntityRecognitionModelMetrics.Buildercopy(NamedEntityRecognitionModelMetrics model)NamedEntityRecognitionModelMetrics.BuildermacroF1(Float macroF1)F1-score, is a measure of a model\u2019s accuracy on a datasetNamedEntityRecognitionModelMetrics.BuildermacroPrecision(Float macroPrecision)Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)NamedEntityRecognitionModelMetrics.BuildermacroRecall(Float macroRecall)Measures the model’s ability to predict actual positive classes.NamedEntityRecognitionModelMetrics.BuildermicroF1(Float microF1)F1-score, is a measure of a model\u2019s accuracy on a datasetNamedEntityRecognitionModelMetrics.BuildermicroPrecision(Float microPrecision)Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)NamedEntityRecognitionModelMetrics.BuildermicroRecall(Float microRecall)Measures the model’s ability to predict actual positive classes.NamedEntityRecognitionModelMetrics.BuilderweightedF1(Float weightedF1)F1-score, is a measure of a model\u2019s accuracy on a datasetNamedEntityRecognitionModelMetrics.BuilderweightedPrecision(Float weightedPrecision)Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)NamedEntityRecognitionModelMetrics.BuilderweightedRecall(Float weightedRecall)Measures the model’s ability to predict actual positive classes.
-
-
-
Method Detail
-
microF1
public NamedEntityRecognitionModelMetrics.Builder microF1(Float microF1)
F1-score, is a measure of a model\u2019s accuracy on a dataset- Parameters:
microF1- the value to set- Returns:
- this builder
-
microPrecision
public NamedEntityRecognitionModelMetrics.Builder microPrecision(Float microPrecision)
Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)- Parameters:
microPrecision- the value to set- Returns:
- this builder
-
microRecall
public NamedEntityRecognitionModelMetrics.Builder microRecall(Float microRecall)
Measures the model’s ability to predict actual positive classes.It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Parameters:
microRecall- the value to set- Returns:
- this builder
-
macroF1
public NamedEntityRecognitionModelMetrics.Builder macroF1(Float macroF1)
F1-score, is a measure of a model\u2019s accuracy on a dataset- Parameters:
macroF1- the value to set- Returns:
- this builder
-
macroPrecision
public NamedEntityRecognitionModelMetrics.Builder macroPrecision(Float macroPrecision)
Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)- Parameters:
macroPrecision- the value to set- Returns:
- this builder
-
macroRecall
public NamedEntityRecognitionModelMetrics.Builder macroRecall(Float macroRecall)
Measures the model’s ability to predict actual positive classes.It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Parameters:
macroRecall- the value to set- Returns:
- this builder
-
weightedF1
public NamedEntityRecognitionModelMetrics.Builder weightedF1(Float weightedF1)
F1-score, is a measure of a model\u2019s accuracy on a dataset- Parameters:
weightedF1- the value to set- Returns:
- this builder
-
weightedPrecision
public NamedEntityRecognitionModelMetrics.Builder weightedPrecision(Float weightedPrecision)
Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)- Parameters:
weightedPrecision- the value to set- Returns:
- this builder
-
weightedRecall
public NamedEntityRecognitionModelMetrics.Builder weightedRecall(Float weightedRecall)
Measures the model’s ability to predict actual positive classes.It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Parameters:
weightedRecall- the value to set- Returns:
- this builder
-
build
public NamedEntityRecognitionModelMetrics build()
-
copy
public NamedEntityRecognitionModelMetrics.Builder copy(NamedEntityRecognitionModelMetrics model)
-
-