Class NamedEntityRecognitionModelMetrics
- java.lang.Object
-
- com.oracle.bmc.http.client.internal.ExplicitlySetBmcModel
-
- com.oracle.bmc.ailanguage.model.NamedEntityRecognitionModelMetrics
-
@Generated(value="OracleSDKGenerator", comments="API Version: 20221001") public final class NamedEntityRecognitionModelMetrics extends com.oracle.bmc.http.client.internal.ExplicitlySetBmcModelModel level named entity recognition metrics
Note: Objects should always be created or deserialized using theNamedEntityRecognitionModelMetrics.Builder.This model distinguishes fields that are null because they are unset from fields that are explicitly set to null. This is done in the setter methods of the
NamedEntityRecognitionModelMetrics.Builder, which maintain a set of all explicitly set fields calledNamedEntityRecognitionModelMetrics.Builder.__explicitlySet__. ThehashCode()andequals(Object)methods are implemented to take the explicitly set fields into account. The constructor, on the other hand, does not take the explicitly set fields into account (since the constructor cannot distinguish explicit null from unset null).
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classNamedEntityRecognitionModelMetrics.Builder
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static NamedEntityRecognitionModelMetrics.Builderbuilder()Create a new builder.booleanequals(Object o)FloatgetMacroF1()F1-score, is a measure of a model\u2019s accuracy on a datasetFloatgetMacroPrecision()Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)FloatgetMacroRecall()Measures the model’s ability to predict actual positive classes.FloatgetMicroF1()F1-score, is a measure of a model\u2019s accuracy on a datasetFloatgetMicroPrecision()Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)FloatgetMicroRecall()Measures the model’s ability to predict actual positive classes.FloatgetWeightedF1()F1-score, is a measure of a model\u2019s accuracy on a datasetFloatgetWeightedPrecision()Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)FloatgetWeightedRecall()Measures the model’s ability to predict actual positive classes.inthashCode()NamedEntityRecognitionModelMetrics.BuildertoBuilder()StringtoString()StringtoString(boolean includeByteArrayContents)Return a string representation of the object.
-
-
-
Constructor Detail
-
NamedEntityRecognitionModelMetrics
@Deprecated @ConstructorProperties({"microF1","microPrecision","microRecall","macroF1","macroPrecision","macroRecall","weightedF1","weightedPrecision","weightedRecall"}) public NamedEntityRecognitionModelMetrics(Float microF1, Float microPrecision, Float microRecall, Float macroF1, Float macroPrecision, Float macroRecall, Float weightedF1, Float weightedPrecision, Float weightedRecall)
Deprecated.
-
-
Method Detail
-
builder
public static NamedEntityRecognitionModelMetrics.Builder builder()
Create a new builder.
-
toBuilder
public NamedEntityRecognitionModelMetrics.Builder toBuilder()
-
getMicroF1
public Float getMicroF1()
F1-score, is a measure of a model\u2019s accuracy on a dataset- Returns:
- the value
-
getMicroPrecision
public Float getMicroPrecision()
Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)- Returns:
- the value
-
getMicroRecall
public Float getMicroRecall()
Measures the model’s ability to predict actual positive classes.It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Returns:
- the value
-
getMacroF1
public Float getMacroF1()
F1-score, is a measure of a model\u2019s accuracy on a dataset- Returns:
- the value
-
getMacroPrecision
public Float getMacroPrecision()
Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)- Returns:
- the value
-
getMacroRecall
public Float getMacroRecall()
Measures the model’s ability to predict actual positive classes.It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Returns:
- the value
-
getWeightedF1
public Float getWeightedF1()
F1-score, is a measure of a model\u2019s accuracy on a dataset- Returns:
- the value
-
getWeightedPrecision
public Float getWeightedPrecision()
Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)- Returns:
- the value
-
getWeightedRecall
public Float getWeightedRecall()
Measures the model’s ability to predict actual positive classes.It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct.
- Returns:
- the value
-
toString
public String toString()
- Overrides:
toStringin classcom.oracle.bmc.http.client.internal.ExplicitlySetBmcModel
-
toString
public String toString(boolean includeByteArrayContents)
Return a string representation of the object.- Parameters:
includeByteArrayContents- true to include the full contents of byte arrays- Returns:
- string representation
-
equals
public boolean equals(Object o)
- Overrides:
equalsin classcom.oracle.bmc.http.client.internal.ExplicitlySetBmcModel
-
hashCode
public int hashCode()
- Overrides:
hashCodein classcom.oracle.bmc.http.client.internal.ExplicitlySetBmcModel
-
-