Package com.oracle.bmc.ailanguage.model
Class EntityMetrics.Builder
- java.lang.Object
- 
- com.oracle.bmc.ailanguage.model.EntityMetrics.Builder
 
- 
- Enclosing class:
- EntityMetrics
 
 public static class EntityMetrics.Builder extends Object 
- 
- 
Constructor SummaryConstructors Constructor Description Builder()
 - 
Method SummaryAll Methods Instance Methods Concrete Methods Modifier and Type Method Description EntityMetricsbuild()EntityMetrics.Buildercopy(EntityMetrics model)EntityMetrics.Builderf1(Float f1)F1-score, is a measure of a model\u2019s accuracy on a datasetEntityMetrics.Builderlabel(String label)Entity labelEntityMetrics.Builderprecision(Float precision)Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)EntityMetrics.Builderrecall(Float recall)Measures the model’s ability to predict actual positive classes.
 
- 
- 
- 
Method Detail- 
labelpublic EntityMetrics.Builder label(String label) Entity label- Parameters:
- label- the value to set
- Returns:
- this builder
 
 - 
f1public EntityMetrics.Builder f1(Float f1) F1-score, is a measure of a model\u2019s accuracy on a dataset- Parameters:
- f1- the value to set
- Returns:
- this builder
 
 - 
precisionpublic EntityMetrics.Builder precision(Float precision) Precision refers to the number of true positives divided by the total number of positive predictions (i.e., the number of true positives plus the number of false positives)- Parameters:
- precision- the value to set
- Returns:
- this builder
 
 - 
recallpublic EntityMetrics.Builder recall(Float recall) Measures the model’s ability to predict actual positive classes.It is the ratio between the predicted true positives and what was actually tagged. The recall metric reveals how many of the predicted classes are correct. - Parameters:
- recall- the value to set
- Returns:
- this builder
 
 - 
buildpublic EntityMetrics build() 
 - 
copypublic EntityMetrics.Builder copy(EntityMetrics model) 
 
- 
 
-