Learn how to create a deterministic multi-step workflow with agents.
Multi-Step Workflow Example
This example demonstrates how to create a deterministic workflow with agentic steps,
combining native control flow and a "Reasoning and Acting" (ReAct) agent framework.
Unlike fully autonomous agent workflows, a deterministic workflow gives you control over the sequence of steps while leveraging the power of agents for specific tasks.
Python 🔗
multi-step-workflow.py
from oci.addons.adk import Agent, AgentClient
from custom_functon_tools import ResearcherToolkit, WriterToolkit
"""
This examples shows how you can build "deterministically orchestrated workflows with agentic steps".
"""
# Your (existing) vanilla python code to be integrated into this agentic workflow
def get_user_preferences():
# Simulate result you fetched from a DB
return {
"email": "your@email.com",
"style": ["casual", "humorous"],
"topics": ["ai"]
}
def main():
client = AgentClient(
auth_type="api_key",
profile="DEFAULT",
region="us-chicago-1"
)
researcher = Agent(
client=client,
agent_endpoint_id="ocid1.genaiagentendpoint...",
name="Researcher",
instructions="You are a researcher. You research trending keywords based on the user preferences.",
tools=[ResearcherToolkit()]
)
writer = Agent(
client=client,
agent_endpoint_id="ocid1.genaiagentendpoint...",
name="Writer",
instructions="You are a writer. You write a blog post based on the trending keywords and the user preferences.",
tools=[WriterToolkit()]
)
researcher.setup()
writer.setup()
# Step 1: Fetch user preferences or any pre-processing information. (non-agentic step)
user_preferences = get_user_preferences()
# Step 2: Research trending keywords using outputs from the previous steps as input. (agentic step)
topics = user_preferences['topics']
researcher_prompt = f"Research trending keywords for the following topics: {topics}"
last_run_response = researcher.run(researcher_prompt)
# Step 3: Write a blog post using outputs from last two steps as input. (agentic step)
keywords = last_run_response.output
style = user_preferences['style']
email = user_preferences['email']
writer_prompt = f"Write a 5 sentences blog post and email it to {email}. Use style: {style}. Blog post should be based on: {keywords}."
last_run_response = writer.run(writer_prompt)
# Step 4: Do whatever you want with the last step output. Here we just print it.
last_run_response.pretty_print()
if __name__ == "__main__":
main()
Java 🔗
AgenticWorkflowDemo.java
package demos.determinsticWorkflow;
import com.oracle.bmc.ConfigFileReader;
import com.oracle.bmc.adk.client.AgentClient;
import com.oracle.bmc.adk.run.RunResponse;
import com.oracle.bmc.auth.BasicAuthenticationDetailsProvider;
import com.oracle.bmc.auth.SessionTokenAuthenticationDetailsProvider;
import com.oracle.bmc.adk.agent.Agent;
import com.oracle.bmc.adk.agent.RunOptions;
import com.oracle.bmc.adk.examples.determinsticWorkflow.tools.ResearcherToolkit;
import com.oracle.bmc.adk.examples.determinsticWorkflow.tools.WriterToolkit;
import java.io.IOException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class AgenticWorkflowDemo {
public static void main(String[] args) throws IOException {
// Configuration parameters
final String configLocation = "~/.oci/config";
final String configProfile = "DEFAULT";
final String researchAgentEndpointId =
"ocid1.genaiagentendpoint...";
final String writerAgentEndpointId =
"ocid1.genaiagentendpoint...";
// Initialize AgentClient
BasicAuthenticationDetailsProvider authProvider =
new SessionTokenAuthenticationDetailsProvider(
ConfigFileReader.parse(configLocation, configProfile));
AgentClient client =
AgentClient.builder()
.authProvider(authProvider)
.region("us-chicago-1")
.build();
// Create researcher agent with its toolkit
Agent researcher = Agent.builder()
.client(client)
.agentEndpointId(researchAgentEndpointId)
.instructions(
"You are a researcher. You research trending keywords based on the user preferences.")
.tools(Arrays.asList(new ResearcherToolkit()))
.name("Researcher")
.build();
// Create writer agent with its toolkit
Agent writer = Agent.builder()
.client(client)
.agentEndpointId(writerAgentEndpointId)
.instructions(
"You are a writer. You write a blog post based on the trending keywords and the user preferences.")
.tools(Arrays.asList(new WriterToolkit()))
.name("Writer")
.build();
// Set up both agents
researcher.setup();
writer.setup();
// Step 1: fetch user preferences (a non-agentic step)
Map<String, Object> userPreferences = getUserPreferences();
// Step 2: research trending keywords (agentic step)
List<String> topics = (List<String>) userPreferences.get("topics");
String researcherPrompt = "Research trending keywords for the following topics: " + topics;
final Integer maxSteps = 3;
RunOptions runOptions = RunOptions.builder().maxSteps(maxSteps).build();
RunResponse researcherResponse = researcher.run(researcherPrompt, runOptions);
String keywords = researcherResponse.getOutput();
// Step 3: write a blog post (agentic step)
List<String> style = (List<String>) userPreferences.get("style");
String email = (String) userPreferences.get("delivery_email");
String writerPrompt =
"Write a 5 sentences blog post and email it to "
+ email
+ ". Use style: "
+ style
+ ". Blog post should be based on: "
+ keywords;
RunResponse writerResponse = writer.run(writerPrompt, runOptions);
// Step 4: print the final output
writerResponse.prettyPrint();
}
// Simulate fetching user preferences (for example, from a database)
private static Map<String, Object> getUserPreferences() {
Map<String, Object> preferences = new HashMap<>();
preferences.put("delivery_email", "j.jing.y.yang@oracle.com");
preferences.put("style", Arrays.asList("casual", "humorous"));
preferences.put("topics", Arrays.asList("ai"));
return preferences;
}
}
Custom Function Tools 🔗
This example uses custom toolkits for the researcher and writer agents. Here's a simplified version of what these might look like:
Python 🔗
custom_functon_tools.py
from typing import Dict, List
from oci.addons.adk import tool, Toolkit
@tool
def get_trending_keywords(topic: str) -> Dict[str, List[str]]:
"""Get trending keywords for a given topic"""
# In a real implementation, this might call an API or database.
if topic == "ai":
return {"topic": topic, "keywords": ["generative AI", "multi-agent systems", "LLM agents"]}
return {"topic": topic, "keywords": ["unknown"]}
@tool
def send_email(recipient: str, subject: str, body: str) -> str:
"""Send an email with the given subject and body to the recipient"""
# In a real implementation, this would send an actual email.
print(f"Sending email to {recipient}")
print(f"Subject: {subject}")
print(f"Body: {body}")
return "Email sent successfully"
class ResearcherToolkit(Toolkit):
"""Toolkit for researching trending topics"""
def __init__(self):
super().__init__(name="ResearcherToolkit", description="Tools for researching trending topics")
self.add_tool(get_trending_keywords)
class WriterToolkit(Toolkit):
"""Toolkit for writing content and sending emails"""
def __init__(self):
super().__init__(name="WriterToolkit", description="Tools for writing content and sending emails")
self.add_tool(send_email)
Java 🔗
MultiAgentTools.java
package demos.tools;
import com.oracle.bmc.adk.tools.Param;
import com.oracle.bmc.adk.tools.Tool;
import com.oracle.bmc.adk.tools.Toolkit;
public class MultiAgentTools extends Toolkit {
@Tool(name = "get_trending_keywords", description = "Get the trending keywords for a given topic")
public static String getTrendingKeywords(
@Param(description = "The topic to get trending keywords for") String topic) {
return "{\"topic\": \"" + topic + "\", \"keywords\": [\"agent\", \"stargate\", \"openai\"]}";
}
@Tool(name = "send_email", description = "Send an email to a recipient")
public static String sendEmail(
@Param(description = "The recipient email address") String recipient,
@Param(description = "The email subject") String subject,
@Param(description = "The email body content") String body) {
System.out.println(
"Sending email to " + recipient + " with subject " + subject + " and body " + body);
return "Sent!";
}
}
When to use this pattern 🔗
This pattern is particularly useful when:
You need predictable, repeatable execution.
Parts of your workflow depend on existing systems or databases.
You need to control exactly when and how agents are invoked.
Business logic demands specific sequences that shouldn't be left to agent decision-making.