Class GenericChatRequest
- java.lang.Object
- 
- com.oracle.bmc.http.client.internal.ExplicitlySetBmcModel
- 
- com.oracle.bmc.generativeaiinference.model.BaseChatRequest
- 
- com.oracle.bmc.generativeaiinference.model.GenericChatRequest
 
 
 
- 
 @Generated(value="OracleSDKGenerator", comments="API Version: 20231130") public final class GenericChatRequest extends BaseChatRequestDetails for the chat request.
 Note: Objects should always be created or deserialized using theGenericChatRequest.Builder. This model distinguishes fields that are null because they are unset from fields that are explicitly set to null. This is done in the setter methods of theGenericChatRequest.Builder, which maintain a set of all explicitly set fields calledGenericChatRequest.Builder.__explicitlySet__. ThehashCode()andequals(Object)methods are implemented to take the explicitly set fields into account. The constructor, on the other hand, does not take the explicitly set fields into account (since the constructor cannot distinguish explicit null from unset null).
- 
- 
Nested Class SummaryNested Classes Modifier and Type Class Description static classGenericChatRequest.Builderstatic classGenericChatRequest.ReasoningEffortConstrains effort on reasoning for reasoning models.static classGenericChatRequest.VerbosityConstrains the verbosity of the model’s response.- 
Nested classes/interfaces inherited from class com.oracle.bmc.generativeaiinference.model.BaseChatRequestBaseChatRequest.ApiFormat
 
- 
 - 
Constructor SummaryConstructors Constructor Description GenericChatRequest(List<Message> messages, GenericChatRequest.ReasoningEffort reasoningEffort, GenericChatRequest.Verbosity verbosity, Object metadata, Boolean isStream, StreamOptions streamOptions, Integer numGenerations, Integer seed, Boolean isEcho, Integer topK, Double topP, Double temperature, Double frequencyPenalty, Double presencePenalty, List<String> stop, Integer logProbs, Integer maxTokens, Integer maxCompletionTokens, Object logitBias, Prediction prediction, ResponseFormat responseFormat, ToolChoice toolChoice, Boolean isParallelToolCalls, List<ToolDefinition> tools, WebSearchOptions webSearchOptions)Deprecated.
 - 
Method SummaryAll Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static GenericChatRequest.Builderbuilder()Create a new builder.booleanequals(Object o)DoublegetFrequencyPenalty()To reduce repetitiveness of generated tokens, this number penalizes new tokens based on their frequency in the generated text so far.BooleangetIsEcho()Whether to include the user prompt in the response.BooleangetIsParallelToolCalls()Whether to enable parallel function calling during tool use.BooleangetIsStream()Whether to stream back partial progress.ObjectgetLogitBias()Modifies the likelihood of specified tokens that appear in the completion.IntegergetLogProbs()Includes the logarithmic probabilities for the most likely output tokens and the chosen tokens.IntegergetMaxCompletionTokens()An upper bound for the number of tokens that can be generated for a completion, including visible output tokens and reasoning tokens.IntegergetMaxTokens()The maximum number of tokens that can be generated per output sequence.List<Message>getMessages()The series of messages in a chat request.ObjectgetMetadata()Set of 16 key-value pairs that can be attached to an object.IntegergetNumGenerations()The number of of generated texts that will be returned.PredictiongetPrediction()DoublegetPresencePenalty()To reduce repetitiveness of generated tokens, this number penalizes new tokens based on whether they’ve appeared in the generated text so far.GenericChatRequest.ReasoningEffortgetReasoningEffort()Constrains effort on reasoning for reasoning models.ResponseFormatgetResponseFormat()IntegergetSeed()If specified, the backend will make a best effort to sample tokens deterministically, so that repeated requests with the same seed and parameters yield the same result.List<String>getStop()List of strings that stop the generation if they are generated for the response text.StreamOptionsgetStreamOptions()DoublegetTemperature()A number that sets the randomness of the generated output.ToolChoicegetToolChoice()List<ToolDefinition>getTools()A list of tools the model may call.IntegergetTopK()An integer that sets up the model to use only the top k most likely tokens in the generated output.DoublegetTopP()If set to a probability 0.0 < p < 1.0, it ensures that only the most likely tokens, with total probability mass of p, are considered for generation at each step.GenericChatRequest.VerbositygetVerbosity()Constrains the verbosity of the model’s response.WebSearchOptionsgetWebSearchOptions()inthashCode()GenericChatRequest.BuildertoBuilder()StringtoString()StringtoString(boolean includeByteArrayContents)Return a string representation of the object.
 
- 
- 
- 
Constructor Detail- 
GenericChatRequest@Deprecated public GenericChatRequest(List<Message> messages, GenericChatRequest.ReasoningEffort reasoningEffort, GenericChatRequest.Verbosity verbosity, Object metadata, Boolean isStream, StreamOptions streamOptions, Integer numGenerations, Integer seed, Boolean isEcho, Integer topK, Double topP, Double temperature, Double frequencyPenalty, Double presencePenalty, List<String> stop, Integer logProbs, Integer maxTokens, Integer maxCompletionTokens, Object logitBias, Prediction prediction, ResponseFormat responseFormat, ToolChoice toolChoice, Boolean isParallelToolCalls, List<ToolDefinition> tools, WebSearchOptions webSearchOptions) Deprecated.
 
- 
 - 
Method Detail- 
builderpublic static GenericChatRequest.Builder builder() Create a new builder.
 - 
toBuilderpublic GenericChatRequest.Builder toBuilder() 
 - 
getMessagespublic List<Message> getMessages() The series of messages in a chat request.Includes the previous messages in a conversation. Each message includes a role (USER or the CHATBOT) and content. - Returns:
- the value
 
 - 
getReasoningEffortpublic GenericChatRequest.ReasoningEffort getReasoningEffort() Constrains effort on reasoning for reasoning models.Currently supported values are minimal, low, medium, and high. Reducing reasoning effort can result in faster responses and fewer tokens used on reasoning in a response. - Returns:
- the value
 
 - 
getVerbositypublic GenericChatRequest.Verbosity getVerbosity() Constrains the verbosity of the model’s response.Lower values will result in more concise responses, while higher values will result in more verbose responses. - Returns:
- the value
 
 - 
getMetadatapublic Object getMetadata() Set of 16 key-value pairs that can be attached to an object.This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. - Returns:
- the value
 
 - 
getIsStreampublic Boolean getIsStream() Whether to stream back partial progress.If set to true, as tokens become available, they are sent as data-only server-sent events. - Returns:
- the value
 
 - 
getStreamOptionspublic StreamOptions getStreamOptions() 
 - 
getNumGenerationspublic Integer getNumGenerations() The number of of generated texts that will be returned.- Returns:
- the value
 
 - 
getSeedpublic Integer getSeed() If specified, the backend will make a best effort to sample tokens deterministically, so that repeated requests with the same seed and parameters yield the same result.However, determinism cannot be fully guaranteed. - Returns:
- the value
 
 - 
getIsEchopublic Boolean getIsEcho() Whether to include the user prompt in the response.Applies only to non-stream results. - Returns:
- the value
 
 - 
getTopKpublic Integer getTopK() An integer that sets up the model to use only the top k most likely tokens in the generated output.A higher k introduces more randomness into the output making the output text sound more natural. Default value is -1 which means to consider all tokens. Setting to 0 disables this method and considers all tokens. If also using top p, then the model considers only the top tokens whose probabilities add up to p percent and ignores the rest of the k tokens. For example, if k is 20, but the probabilities of the top 10 add up to .75, then only the top 10 tokens are chosen. - Returns:
- the value
 
 - 
getTopPpublic Double getTopP() If set to a probability 0.0 < p < 1.0, it ensures that only the most likely tokens, with total probability mass of p, are considered for generation at each step.To eliminate tokens with low likelihood, assign p a minimum percentage for the next token's likelihood. For example, when p is set to 0.75, the model eliminates the bottom 25 percent for the next token. Set to 1 to consider all tokens and set to 0 to disable. If both k and p are enabled, p acts after k. - Returns:
- the value
 
 - 
getTemperaturepublic Double getTemperature() A number that sets the randomness of the generated output.A lower temperature means a less random generations. Use lower numbers for tasks with a correct answer such as question answering or summarizing. High temperatures can generate hallucinations or factually incorrect information. Start with temperatures lower than 1.0 and increase the temperature for more creative outputs, as you regenerate the prompts to refine the outputs. - Returns:
- the value
 
 - 
getFrequencyPenaltypublic Double getFrequencyPenalty() To reduce repetitiveness of generated tokens, this number penalizes new tokens based on their frequency in the generated text so far.Values > 0 encourage the model to use new tokens and values < 0 encourage the model to repeat tokens. Set to 0 to disable. - Returns:
- the value
 
 - 
getPresencePenaltypublic Double getPresencePenalty() To reduce repetitiveness of generated tokens, this number penalizes new tokens based on whether they’ve appeared in the generated text so far.Values > 0 encourage the model to use new tokens and values < 0 encourage the model to repeat tokens. Similar to frequency penalty, a penalty is applied to previously present tokens, except that this penalty is applied equally to all tokens that have already appeared, regardless of how many times they've appeared. Set to 0 to disable. - Returns:
- the value
 
 - 
getStoppublic List<String> getStop() List of strings that stop the generation if they are generated for the response text.The returned output will not contain the stop strings. - Returns:
- the value
 
 - 
getLogProbspublic Integer getLogProbs() Includes the logarithmic probabilities for the most likely output tokens and the chosen tokens.For example, if the log probability is 5, the API returns a list of the 5 most likely tokens. The API returns the log probability of the sampled token, so there might be up to logprobs+1 elements in the response. - Returns:
- the value
 
 - 
getMaxTokenspublic Integer getMaxTokens() The maximum number of tokens that can be generated per output sequence.The token count of your prompt plus maxTokens must not exceed the model’s context length. For on-demand inferencing, the response length is capped at 4,000 tokens for each run. - Returns:
- the value
 
 - 
getMaxCompletionTokenspublic Integer getMaxCompletionTokens() An upper bound for the number of tokens that can be generated for a completion, including visible output tokens and reasoning tokens.- Returns:
- the value
 
 - 
getLogitBiaspublic Object getLogitBias() Modifies the likelihood of specified tokens that appear in the completion.Example: '{"6395": 2, "8134": 1, "21943": 0.5, "5923": -100}' - Returns:
- the value
 
 - 
getPredictionpublic Prediction getPrediction() 
 - 
getResponseFormatpublic ResponseFormat getResponseFormat() 
 - 
getToolChoicepublic ToolChoice getToolChoice() 
 - 
getIsParallelToolCallspublic Boolean getIsParallelToolCalls() Whether to enable parallel function calling during tool use.- Returns:
- the value
 
 - 
getToolspublic List<ToolDefinition> getTools() A list of tools the model may call.Use this to provide a list of functions the model may generate JSON inputs for. A max of 128 functions are supported. - Returns:
- the value
 
 - 
getWebSearchOptionspublic WebSearchOptions getWebSearchOptions() 
 - 
toStringpublic String toString() - Overrides:
- toStringin class- BaseChatRequest
 
 - 
toStringpublic String toString(boolean includeByteArrayContents) Return a string representation of the object.- Overrides:
- toStringin class- BaseChatRequest
- Parameters:
- includeByteArrayContents- true to include the full contents of byte arrays
- Returns:
- string representation
 
 - 
equalspublic boolean equals(Object o) - Overrides:
- equalsin class- BaseChatRequest
 
 - 
hashCodepublic int hashCode() - Overrides:
- hashCodein class- BaseChatRequest
 
 
- 
 
-